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Abstract. We present results for the one-particle properties and c-axis transport for exchange-
coupled bilayer systems with strong electronic correlations in the paramagnetic phase. The model
is solved within the dynamical mean-field theory (DMFT). By considering an effective two-site
impurity we are able to treat the coupling between the layers in the diagonalization of the effective
impurity exactly. The one-particle properties and the optical conductivity between the planes
are studied, giving insight into a possible suppression of the one-particle hopping between the
planes by the antiferromagnetic coupling. A strong renormalization of the bilayer splitting up to
a complete suppression by the antiferromagnetic coupling is found. In the optical conductivity
a strong blocking of the charge dynamics between the planes can be seen, accompanied by a
low-energy excitation which must be attributed to inter-plane spin fluctuations.

1. Introduction

Most of the normal-state properties of the high-Tc superconductors can be qualitatively
described by the Hubbard model [1] or the t–J model [2–5]. Here it is assumed that the
electronic degrees of freedom which are responsible for transport, optical properties etc are
essentially two-dimensional, and effectively consisting of copper dx2−y2 orbitals. Electrons in
these orbitals are usually subject to a particularly strong local Coulomb interaction leading to
the experimentally observed anomalous properties.

The standard high-Tc material (La, Sr)2CuO4 indeed consists of single CuO2 sheets well
separated by insulating layers, and such a description seems to be justified. However, the
compounds with the highest Tc are known to rather have stacks of two (YBa2Cu3O6+δ) or more
(Tl2Ba2Ca2Cu3O10) coupled CuO2 planes separated by insulating layers.

There are several indications that the inter-layer coupling within these stacks of CuO2

planes is crucial for understanding the electronic properties including superconductivity.
Especially in the inter-layer tunnelling theory, the suppression of the coherent one-particle
hopping between the CuO2 layers in the normal state is the key point in moving towards an
understanding of the mechanism of high-temperature superconductivity [6].

Such a suppression of coherence should have strong effects on physical quantities like
one-particle excitations and the optical conductivity. For YBa2Cu3O6+δ strong evidence for a
bilayer splitting of the CuO2 bands related to the existence of two CuO2 planes in a unit cell
can be found in photoemission experiments [8,9], whereas in Bi2Sr2CaCu2O8+δ only one band
can be resolved experimentally [10, 11]. The optical conductivity perpendicular to the planes
is found to be weak and incoherent in the normal state [12] of YBa2Cu3O6.70.

0953-8984/00/102245+19$30.00 © 2000 IOP Publishing Ltd 2245



2246 W Heindl et al

Effects caused by the multi-layer structure of the high-Tc materials can be investigated
by suitable extensions of the two-dimensional Hubbard or t–J models. The bilayer
Hubbard model was especially extensively studied, within the so-called fluctuation exchange
(FLEX) approximation [13–15], where evidence was found that inter-layer antiferromagnetic
correlations strongly reduce the one-particle hopping between the layers. However, this
approximation is limited to values of the interaction between the relevant d states small
compared to the bandwidth and a confirmation of such results from a different type of approach
is clearly necessary.

The aim of this paper is to investigate the particular influence of the inter-layer anti-
ferromagnetic correlations on the single-particle and optical properties in some detail. To this
end we study a bilayer system, where electronic correlations in each layer are described by
a Hubbard model in the limit of a very strong local Coulomb interaction U → ∞. The two
layers are coupled by a tight-binding and an antiferromagnetic exchange interaction. Special
attention is paid to an accurate treatment of the inter-layer coupling.

The paper is organized as follows. The model and the method that we use to study it will
be presented in section 2. Section 3 is devoted to the discussion of the single-particle properties
of the model, which show a pronounced reduction of inter-plane coherence on increasing the
inter-layer antiferromagnetic coupling. These findings are further confirmed by our results for
the optical conductivity perpendicular to the planes presented in section 4. A summary and
discussion will conclude the paper.

2. Method

As a model Hamiltonian for the two individual CuO2 planes (enumerated with l = 1, 2) we
use the standard U = ∞ Hubbard model [5], which is given by

Hl = (ε0 − µ)
∑
i

nl,i − t
∑
〈ij〉,σ

c̃
†
l,σ,i c̃l,σ,j . (1)

The operators c̃†
l,i,σ create a particle at site i on layer l in the restricted Hilbert space of no

doubly occupied lattice sites, Sl,i is the spin operator at site i on layer l and the corresponding
occupation numbers are

nl,i =
∑
σ

c̃
†
l,σ,i c̃l,σ,i .

The coupling between the two layers is described by a hopping integral t⊥ and an
antiferromagnetic coupling J⊥ arising in the standard way from virtual charge fluctuations
between the layers. The inclusion of the latter interaction is very important, as neutron
scattering experiments on YBaCuO show that antiferromagnetic correlations between the
layers are very strong [16]. Thus, the inter-layer coupling is modelled by the Hamiltonian

Ht⊥ = −t⊥
∑
i,σ

(c̃
†
1,σ,i c̃2,σ,i + c̃†

2,σ,i c̃1,σ,i) (2)

HJ⊥ = −J⊥
∑
i

(S1,i · S2,i − 1

4
n1,in2,i ) (3)

and the complete model for describing the system of two coupled planes is finally given by

H = H1 +H2 +Ht⊥ +HJ⊥ . (4)

In this paper we solve this model within the dynamical mean-field theory (DMFT) [17,18],
which will now be suitably extended for the case of two coupled, correlated systems. The
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non-interacting system is diagonal in the band picture of symmetric a+,σ (k) and antisymmetric
a−,σ (k) fermion operators:(

a+,σ (k)

a−,σ (k)

)
= 1√

2

(
+1 +1
+1 −1

) (
c1,σ (k)

c2,σ (k)

)
(5)

corresponding to a diagonal unperturbed Green’s function:

G(0)(k, z) =
(
z− εk − ε+ 0

0 z− εk − ε−
)−1

. (6)

Here a convenient matrix notation was introduced and k denotes the wave vector parallel to the
layers. The energies ε± are given by the expression ε± = ε0 ∓ t⊥. The full Green’s function
of the interacting system can be obtained in standard fashion through Dyson’s equation

G−1(k, z) = G−1
(0)(k, z)−�(k, z). (7)

In the spirit of the DMFT we will neglect the k-dependence of the self-energies within each
layer.

This assumption can be justified in the limit of infinite coordination number, or spatial
dimension d , respectively. To obtain a non-trivial model in this limit one has to scale the
hopping matrix element as t = t∗/(2√

d) [17, 18, 21]. Here we use the DMFT as an approx-
imation even for d = 2. We will set t∗ = 1 as the unit of energy and measure all energies
relative to the chemical potentialµ. For all numerical calculations we will use a model density
of states for the non-interacting electron system of the form ρ0(ε) = π−1/2 exp(−ε2).

At this point we want to note that we introduce explicitly an exchange interaction J⊥
between the layers but neglect the corresponding exchange interaction within the layers. A
t–J model description for the layers would certainly be more realistic. The U = ∞ Hubbard
model used instead nevertheless describes rather well the electronic correlations in the layers
for the single-particle excitations. In the framework of the DMFT it is in fact equivalent to the
t–J model in the paramagnetic state, because in this approximation the exchange interaction
enters only at the Hartree level and hence contributes only in a magnetically ordered state.
The inclusion of short-range magnetic fluctuations in the layers would require an extension
of the DMFT to clusters as local units which in principle is possible. From experimental
evidence and results obtained with other theoretical techniques it seems clear that at least in
the paramagnetic phase the inter-layer coupling is the more important one with respect to a
possible suppression of inter-layer coherence, and thus the neglect of the intra-layer exchange
interactions seems to be justified for the time being.

Due to the low dimensionality of the coupling between the two layers—i.e. every lattice site
on one layer is only connected to one lattice site on the opposite layer—the k⊥-dependence
of the self-energies perpendicular to the planes is treated exactly, giving two self-energies
�+/−(z) corresponding to k⊥ = 0 and k⊥ = π .

Since the full Hamiltonian is symmetric under the exchange of the planes, the self-energy
has two independent contributions

�(z) =
(
�+(z) 0

0 �−(z)

)
(8)

only, if we assume that there is no spontaneous symmetry breaking.
Finally, the local nature of the self-energies�+(z) and�−(z) allows one to map the lattice

model onto an effective Anderson impurity problem. Motivated by the symmetry of the model
we choose the effective impurity to consist of two adjacent lattice sites on the two layers. This
choice allows us to treat the coupling between the layers exactly. We thus define the effective
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impurity to beHt⊥ +HJ⊥ . Diagonalizing this system gives (in the reduced Hilbert space without
doubly occupied sites) nine eigenstates which are listed in table 1.

The crucial point here is the splitting of the two-particle states into a singlet state |S = 0〉
with an energy 2ε0 − J⊥ and a triplet state |S = 1〉 with energy 2ε0. Note that both states are
degenerate for J⊥ = 0 while the singlet has the lower energy for J⊥ > 0, as expected.

Table 1. Eigenstates of the effective impurity.

Number Degeneracy Name Energy Spin

0 1 |0〉 0 0

1 2 |−, σ 〉 ε− 1
2

1 2 |+, σ 〉 ε+
1
2

2 3 |S = 1〉 2ε0 1

2 1 |S = 0〉 2ε0 − J⊥ 0

Within the DMFT the effective impurity couples to the remainder of the lattice through a
‘Weiss field’ (ω)which can be viewed as an average dynamic scattering potential for the local
particles and replaces Anderson’s hybridization function in the conventional single-impurity
Anderson model. For a given self-energy �α(z), where α = ±, and a corresponding local
Green’s function

Gα(z) =
∫

dε ρ0(ε)
1

z− εα − ε −�α(z) (9)

the quantity  α(ω) is obtained as [20, 26]

 α(ω) = Im(Gα(z)
−1 +�α(z)). (10)

As in a conventional mean-field theory,  α(ω) has to be determined self-consistently in the
course of the calculation.

The remaining problem is to solve the impurity problem defined by the set of states in
table 1 and the given hybridization functions  α(ω). Since we are dealing with a model at
U = ∞, the only feasible method available up to now is the resolvent technique [22, 23],
which represents a perturbation theory in  α(ω). A well established approximation in this
technique is the non-crossing approximation [24]. The resolvent approach together with the
NCA has proven to be reliable and accurate in the one-band Hubbard model [19, 26, 27] and
a suitable extension to multi-band systems has been worked out recently [28–30]. The subtle
difference between these cases and the bilayer model under consideration is that there are two
independent hybridization functions  α(ω) present here. On the one hand, this difference is
in particular important for obtaining non-trivial changes in the behaviour of the bilayer model
as compared to the conventional t–J model. On the other hand, it leads to subtleties in the
perturbation theory in the limit t⊥ → 0, J⊥ → 0 whose implications will be discussed in some
detail in the appendix.

3. One-particle properties

Let us start the discussion of our results by examining the general structures of the density of
states (DOS) as obtained from the local Green’s functions via

ρα(ω) = − 1

π
ImGα(ω + iδ).
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For t⊥ = 0 and J⊥ = 0 the model reduces to the usual one-band Hubbard model at U = ∞,
whose dynamic properties in the paramagnetic phase have been studied extensively within
DMFT [25, 26, 32]. There one obtains a so-called lower Hubbard band centred around ε0 and
a sharp quasi-particle peak at the Fermi level due to many-body effects. Since we are dealing
with U = ∞ the upper Hubbard band is shifted to infinite energies.

In figure 1 the single-particle DOS for the symmetric (ρ+(ω)) and the antisymmetric
(ρ−(ω)) states of the bilayer model with t⊥ = 0.2 and J⊥ = 0.0 at a temperature T = 1/50 is
shown.
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ω
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Figure 1. Spectral functions for the symmetric band (solid line) and antisymmetric band (dashed
line) with parameters J⊥ = 0, t⊥ = 0.2, β = 50.0. The inset shows the region around the Fermi
level.

One can clearly see the expected splitting of the lower Hubbard bands of the order of 2t⊥,
with the symmetric band centred around ε0 − t⊥ and the antisymmetric band around ε0 + t⊥.

Since at low temperatures the physics is dominated by the behaviour at the Fermi level,
we now concentrate on the effects of t⊥ on the quasi-particle peak. The first observation that
one makes here is that the height and width of the peaks for the symmetric and antisymmetric
states are different, pointing towards different characteristic energy scales. From previous
studies it is known that the quasi-particle peak has an origin similar to the Abrikosov–Suhl
resonance [26, 27] well known from the physics of the single-impurity Anderson model. The
scale for the development of this many-body resonance is set by the Kondo temperature,
which obeys an exponential law of the form ln(TK) ∝ −|ε0|. Assuming that this relation
for the Kondo temperature can be applied here, too, we find two distinct Kondo temperatures
ln(T ±

K ) ∝ −|ε±| for the two bands. With the other quantities entering TK roughly taken as
constant, we consequently should expect that T +

K < T
−
K . The width of the Kondo peak on the

other hand scales as TK which explains why the quasi-particle peak of the symmetric band is
broader than the peak of the antisymmetric band. Moreover, for a given finite temperature the
system with the larger TK is closer to saturation and thus displays a higher peak, in accordance
with figure 1.

In addition to the occurrence of two different energy scales for the symmetric and
antisymmetric states, one also sees a splitting in the position of the maxima of the two
resonances. Interestingly the direction of the shift is reversed as compared to the case for
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the Hubbard bands: the quasi-particle peak for the symmetric band is shifted towards higher
energies, while the one for the antisymmetric band has the lower energy. Also, the scale of
this splitting is quite different from the bare inter-layer coupling t⊥.

The influence of the correlations on the inter-layer hopping can be studied best by looking
at the difference in energy  E of the maxima of the lower Hubbard bands, which for non-
interacting particles should be just 2t⊥. The splitting of the maxima of the calculated DOS
normalized to 2t⊥ as a function of t⊥ is presented in figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
t⊥

1.0

1.1

1.2

1.3

∆E
/(

2t
⊥
)

Figure 2. Splitting of the symmetric and the antisymmetric bands E (in units of 2t⊥) versus t⊥.

For small values of t⊥ the band splitting E/(2t⊥) is around the unperturbed value of ≈1.
However, with increasing t⊥ it increases up to a maximum at t⊥ ≈ 0.4. On further increasing
t⊥ the splitting is again reduced and eventually converges to the value of the non-interacting
system  E/(2t⊥) = 1 again as t⊥ → ∞.

The latter observation can be easily understood if one considers the limit t⊥/t � 1. Here,
we may consider each pair of opposite sites on the two layers as effectively decoupled from
the rest of the system. In this case straightforward diagonalization of the remaining two-site
cluster leads to the observed splitting  E = 2t⊥ in the Hubbard bands.

More astonishing and physically interesting is the fact that for moderate inter-layer
coupling the effective hopping teff

⊥ seems to be enhanced.
To shed more light on the physics behind that effect let us first consider the case of an

additional antiferromagnetic exchange between the layers, J⊥ > 0. The development of the
spectral functions with increasing J⊥ is collected in figure 3, where on the right-hand side the
details in the vicinity of the Fermi energy are shown.

With increasing J⊥ the maximum of the symmetric band is shifted to higher energies while
at the same time the position of the maximum of the antisymmetric band is moved to lower
energies. For J⊥ ≈ 0.04 the two maxima appear at the same energy. With further increasing
J⊥, the main weight of the antisymmetric band even shifts below that of the symmetric band
and only a small shoulder around ω ≈ ε− ≈ −0.75 indicates the original position of this band.
Accordingly, the symmetric band has its main weight at higher energies than the antisymmetric
band, again with a small shoulder at the original energy ε+ ≈ −1.5.

A similar behaviour is also seen in the quasi-particle peak. However, the positions of the
two peaks cross at a lower J⊥ ≈ 0.02 and for the maximal value of J⊥ = 0.1 one can clearly
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Figure 3. Spectral functions for the symmetric (solid line) and antisymmetric (dashed line) spectral
functions with parameters t⊥ = 0.2, β = 50.0, δ = 0.05 and various J⊥: (a) J⊥ = 0.0,
(b) J⊥ = 0.02, (c) J⊥ = 0.04, (d) J⊥ = 0.1. On the right-hand side the details around the
Fermi level are shown.

distinguish two individual peaks in every band.
The movements of the peaks in the DOS represented by the positions of their maxima as

a function of J⊥ are collected in figure 4.
A simple explanation for the behaviour observed here can be given by neglecting the

constraint of no double occupancy and treating the Hamiltonian HJ⊥ in a standard mean-
field factorization. This allows one to rewrite its contribution in the form of a hopping term.
In this approximation the influence of HJ⊥ reduces to a renormalization of the hopping to
teff
⊥ = t⊥ − 1

8J⊥ n, with  n = n+ − n−. Since  n of course depends on teff
⊥ this must be

read as a self-consistency equation. Note that  n > 0; i.e. for J⊥ > 0 this renormalization
always reduces t⊥.

It is evident that such a simplified treatment will not reproduce the correct energy scales.
Nevertheless we believe that it describes the observed behaviour of the spectral functions
at least qualitatively, as it shows the renormalization of t⊥ by J⊥, namely a decrease of the
renormalized inter-layer hopping including the change in sign for high enough values of J⊥.
Neglecting the usually positive sign of J⊥ for the time being, one could also easily achieve
teff
⊥ > t⊥ by taking J⊥ < 0.

In connection with this observation it is interesting to note that for the case of J⊥ = 0 an
inspection of the local two-particle states indicates that the S = 1 state is lowered in energy
compared to the S = 0 state through the coupling to the effective medium. It thus seems that
the system itself provides an effective ferromagnetic coupling between neighbouring spins on
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0.00 0.02 0.04 0.06 0.08 0.10
J⊥

−2.0

−1.0

 
 −0.2

0.0

0.2

Figure 4. Maxima of the symmetric (squares) and antisymmetric (diamonds) spectral functions
for various J⊥. The lower part shows the lower Hubbard band; the upper part shows the region
around the Fermi level.

different layers. With the above reasoning such a ferromagnetic coupling would consequently
lead to teff

⊥ > t⊥ as J⊥ → 0, which explains the enhancement observed in figure 2.
The remaining task thus is to understand the origin of the effective ferromagnetic coupling

between the layers. Since we are dealing with a strongly correlated system close to half-
filling we may approximate the situation as follows: the two opposing spins are coupled
through a Kondo-type exchange coupling JK to the effective medium in the corresponding
layer, which in turn leads to a RKKY-like effective exchange coupling between the two
spins J eff

⊥ ∝ −J 2
K cos(2kF⊥r⊥)/(kF⊥r⊥)3. Note that the actual sign of the effective coupling

between local spins and the medium does not enter the argument. Since kF⊥ is either 0 or
π/a⊥ and r⊥ = a⊥, it follows that always J eff

⊥ < 0, i.e. it provides an effective ferromagnetic
coupling between the layers.

Although the above argument is of course very hand-waving and has serious defects,
further evidence for its qualitative correctness is obtained from an inspection of  E/(2t⊥)
as a function of the filling 〈n〉. For half-filling the system is an insulator and consequently
no such J eff

⊥ can exist, since it is based on the assumption of mobile particles. One thus
would expect that for 〈n〉 → 1 one would obtain  E/(2t⊥) = 1 and observe an increase
of  E/(2t⊥) as 〈n〉 decreases. Such a behaviour can indeed be seen in figure 5, where the
splitting  E versus the occupation number 〈n〉 is plotted for t⊥ = 0.2 and J⊥ = 0.0 and
shows the anticipated initial rise. For still smaller particle numbers we expect a decrease of
 E/(2t⊥) again since the influence of correlations will be strongly reduced and the simple
picture used in the explanation ceases to be valid. Unfortunately, the approximations in the
NCA also break down for decreasing filling and 〈n〉 = 0.90 was the lowest filling that we
could reach with this method.

The last point that we want to discuss is the temperature dependence of the spectral
functions. In figure 6 the spectral functions for various values of β are shown. On the left-
hand side we consider the case for J⊥ = 0.0 while the right-hand side shows results for
J⊥ = 0.06. The first interesting point here is that for the lower Hubbard bands the crossing
of the two bands for finite values of J⊥, as stated before and shown in figure 3, also strongly
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Figure 5. Splitting of the symmetric and the antisymmetric bands  E in units of 2t⊥ versus
occupation number 〈n〉.
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Figure 6. Temperature dependences of the spectral functions ρ+(ω) (solid lines) andρ−(ω) (dashed
lines). On the left-hand side results for J⊥ = 0.0 are shown; on the right-hand side we considered
J⊥ = 0.06.

depends on temperature. Lowering the temperature for a fixed value of J⊥ has similar effects
to increasing J⊥ for a fixed temperature. For J⊥ = 0, on the other hand, the positions of the
maxima of the lower Hubbard bands appear to be almost insensitive to temperature.

This astonishing observation can be readily accounted for by the fact that for β = 10, 30
the temperature is higher than or of the order of J⊥ = 0.06 while it is lower for β = 50, 100.
We thus expect that for the first two temperatures the local singlet–triplet splitting caused by
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J⊥ will be washed out due to temperature broadening, i.e. the effect on the Hubbard bands
will be suppressed. It is interesting to note that for β = 10 the relative position of the maxima
is even reversed as compared to that for β = 100, which can be understood with the help
of an effective ferromagnetic exchange mediated by the medium, as discussed above. With
decreasing temperature, on the other hand, the splitting due to J⊥ becomes relevant, leading
to the observed temperature dependence of the maxima of the lower Hubbard bands.

It is also very interesting to compare the development of the quasi-particle peaks at the
Fermi level. As expected from their origin in a dynamically generated low-energy excitation
similar to the Abrikosov–Suhl resonance, they are strongly temperature dependent. In contrast
to the case for vanishing J⊥, where they are at nearly the same energy for all temperatures,
they show a similar behaviour at high temperatures but acquire well separated positions for
low T as already stated earlier.

Let us summarize the previous discussion in a first important conclusion, namely that
contrary to the initial expectations the effective band splitting in the bilayer t–J model is almost
completely governed by magnetic correlations between neighbouring spins on different layers,
whereas the correlations built in as the constraint of no doubly occupied sites seems to have,
apart from giving rise to the usual formation of narrow quasi-particle bands at the Fermi level,
only small influence.

4. Optical c-axis conductivity

As already pointed out by Clarke et al [7], the suppression of the coherent one-particle hopping
in the normal state should manifest itself in the optical c-axis conductivity.

The optical c-axis conductivity σc(ω) is related to the current–current correlation function
〈〈j ; j〉〉(ω + iδ) by

σc(ω) = − 1

ω
Im〈〈j ; j〉〉(ω + iδ). (11)

The current operator in the c-direction

j = −it⊥
∑
k,σ

(a†
+,σ (k)a−,σ (k)− a†

−,σ (k)a+,σ (k)) (12)

can be derived from the continuity equation

j = i[H,P ] (13)

as the time derivative of the c-component of the charge polarization

P = −1

2

∑
k,σ

(a†
+,σ (k)a−,σ (k) + a†

−,σ (k)a+,σ (k)). (14)

In the two quantities the same combination of fermionic operators for the symmetric and
antisymmetric bands occurs. This allows us to write the polarization–polarization correlation
function 〈〈P ;P 〉〉 as

〈〈P ;P 〉〉 = 1

4
((χ++ + χ−−) + (χ+− + χ−+)) (15)

and 〈〈j ; j〉〉 as

〈〈j ; j〉〉 = t2⊥((χ++ + χ−−)− (χ+− + χ−+)) (16)

where the susceptibilities

χακ(iνl) = 1

β2

∑
iωn,iωm

χακ(iνl) (17)



Incoherence in bilayer systems 2255

have been introduced. χακ(iνl) is the shorthand matrix notation for the q = 0 component of

the (spatial Fourier transformed) particle–hole propagators[
χακ
i,j
(iνl)

]
nm

= χακi,j (iωn, iωm, iνl)

=
∑
σ,σ ′

1

β

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4 e−iωn(τ4−τ3)e−iωm(τ2−τ1)e−iνl (τ1−τ4)

× 〈Tτ [a†
α,σ,i(τ4)aα,σ,i(τ3)a

†
κ,σ ′,j (τ2)aκ,σ ′,j (τ1)]〉 (18)

and iωn and iωm denote Fermi Matsubara frequencies and iνl the external Bose Matsubara
frequency. Here and in the following, the labels α, κ and γ denote the symmetric and anti-
symmetric bands {+,−}, and α = −α.

Using standard techniques [31], the susceptibilities can be expressed as functional
derivatives of the Green’s functions with respect to external fields according to the vertices. In
this way one arrives at the following equations for the susceptibilities:

χακ(iνl) = δα,κβχαα(0)(iνl) +
1

β

∑
γ

χαα
(0)
(iνl)0

αγ χγκ(iνl) (19)

with [
χαα(0)(iνl)

]
nm

= −δn,m
∑

k

Gα(k, iωn + iνl)Gα(k, iωn). (20)

The two-particle self-energies 0αγ (iνl) are given as functional derivatives of the one-
particle self-energies with respect to the local Green’s functions. Because of the locality of
the one-particle self-energies it follows that the two-particle self-energies are also purely local,
and hence are identical to the two-particle self-energies of the effective impurity problem. This
allows the calculation of the susceptibilities in a similar way to that described in [32,33]. The
important fact here is that we have four susceptibilities, which are not independent.

These four coupled Dyson equations for the susceptibilities are shown diagrammatically
in figure 7. In this figure the upper left and right indices correspond to the labels α and κ of
the susceptibilities in equation (19), while the lower labels are α and κ , respectively.

Figure 7. Dyson equations for the particle–hole propagators.
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The Dyson equations for the local problem can be formulated with the same 0αγ by
just replacing the susceptibilities χακ(iνl) for the lattice at q = 0 by their local counterparts,

χακ
loc
(iνl), i.e.

χακ
loc
(iνl) = δα,κβχααloc

(0)
(iνl) +

1

β

∑
γ

χαα
loc
(0)
(iνl)0

αγ χγκ
loc
(iνl). (21)

The local particle–hole propagatorsχακ
loc

can be calculated for the impurity by means of standard

diagrammatic rules for the resolvent perturbation theory [22,23], and since χαα(0)loc is expressed
as [

χαα(0)
loc

(iνl)
]
nm

= −δn,mGα(iωn + iνl)Gα(iωn) (22)

these equations can be solved for the unknown quantities 0αγ (iνl).
Inserting the solution for 0αγ (iνl) in equation (19) and solving it for χακ(iνl) finally leads

to

χαα(iνl) =
[
1 − (P ααP αα)−1

]−1
Mαα (23)

χαα(iνl) = (P αα)−1χαα (24)

with

Mαα =
[
(Mαα

loc)
−1 − 1

β
2

]−1

(25)

Mαα
loc = χαα

loc
− χαα

loc
(χα α

loc
)−1χαα

loc
(26)

Pαα = χαα
loc
(χαα

loc
)−1Mαα

loc(M
α α)−1. (27)

Complete information about the lattice is contained in the quantity

2(iνl) = (χαα(0)
loc

(iνl))
−1 − (χαα(0)(iνl))−1. (28)

The importance of the off-diagonal susceptibilities χαα can be best seen by means of the
exact relation

〈〈j ; j〉〉(iνl) = (iνl)2〈〈P ;P 〉〉(iνl)− t⊥ n (29)

between the two correlation functions, which can be readily derived from the continuity
equation (13), The difference of the occupation numbers n = n+ −n− can be calculated from
the single-particle spectral functions. Since it originates from a conservation law, equation (29)
is intimately related to a Ward identity.

Since the 0αγ (iνl) are calculated from the local resolvents, this identity cannot be proven
analytically, but has to be tested numerically. This can be seen in figure 8, where the l.h.s. and
the r.h.s. of equation (29) are compared for J⊥ = 0 and different values of t⊥ on the left-hand
side and for different values of J⊥ with a fixed value of t⊥ = 0 on the right-hand side. As
all four susceptibilities are contained in 〈〈j ; j〉〉(iνl) it is even non-trivial to consider just the
case iνl = 0. Here 〈〈j ; j〉〉(0) denotes the current–current correlation function calculated
from the full equations for the static case iνl = 0, whereas for 〈〈j ; j〉〉0(0) the off-diagonal
susceptibilities have been neglected.

This comparison also gives a crucial test for the calculation of the susceptibilities as it
relates the simple quantity t⊥ n calculated using the Green’s functions to the susceptibilities
obtained from the delicate calculation outlined above. It can be clearly seen that the inclusion
of the off-diagonal susceptibilities is necessary to fulfil (29) and that the two quantities agree
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Figure 8. Comparison of the static current–current correlation function with (〈〈j ; j〉〉(0)) and
without (〈〈j ; j〉〉0(0)) the off-diagonal susceptibilities to t⊥ n, as a test for equation (29).

to a very high accuracy. We also checked the identity (29) for finite external frequencies iνl .
Here the coincidence was less accurate but still satisfactory.

The analytic continuation of the susceptibilities to real frequencies was done with the Padé
approximation [34]. Before looking at the results in detail, a remark about the low energy
behaviour of the optical c-axis conductivity seems to be important. Since we consider a finite
bilayer system in the c-direction where no charge transport with vanishing frequency is possible
because of charge conservation, we do not expect a Drude peak. Thus the necessary relation
σc(0) = 0 gives a further test for the numerical calculation and underlines the importance of
the off-diagonal susceptibilities. While for σc(0) calculated from σc(ω) = −ω Im〈〈P ;P 〉〉
it is of course always fulfilled, equation (11) requires 〈〈j ; j〉〉 to vanish at least like ω3 for
ω → 0. In our calculations it was found that the latter behaviour was only achieved by the
inclusion of the off-diagonal susceptibilities.

Results for the optical c-axis conductivity σc(ω) for various t⊥ are shown in figure 9. The
energy axis is in units of 2t⊥ to show the deviations of the peaks from their non-interacting
values.

For large values of t⊥ a narrow peak at ω ≈ 2t⊥ is obtained. For t⊥ ≈ 0.5 we find the
position of the maximum of the optical c-axis conductivity to be above the value of 2t⊥ for
free electrons. However, for small values of t⊥ it can be seen that the charge response in the
c-direction is strongly suppressed and only a broad featureless plateau is obtained, similar to
what is indeed seen in optical experiments with multi-layer cuprates. Thus, for the optical
c-axis conductivity the strong correlations in the form of the Coulomb repulsion appear to
have a quite drastic effect especially for small t⊥. Note that this observation is not apparent
from the single-particle DOS, where the behaviour is rather consistent with a conventional
band splitting. Therefore, our results also underline the fact that one has to be very careful in
drawing conclusions about two-particle properties on the basis of the behaviour of one-particle
quantities alone.

The optical c-axis conductivity for J⊥ = 0.0 and varying doping in figure 10 also shows
a strong suppression when approaching half-filling δ = 0.0. This is clear, as for δ → 0 the
constraint of no double occupancy simply inhibits any transport. In addition to this it can also
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Figure 9. Optical c-axis conductivity for J⊥ = 0.0 and doping δ = 0.05 and various t⊥ versus
frequency ω in units of 2t⊥. The inset shows the position of the peaks in units of 2t⊥ versus t⊥.
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Figure 10. Optical c-axis conductivity for t⊥ = 0.2, J⊥ = 0.0 and various dopings δ.

be seen that the position of the peak is shifted to lower energies for constant t⊥.
A finite value of J⊥ further enhances this effect, as can be seen from figure 11. For

J⊥ = 0.0 up to J⊥ = 0.04 the charge-fluctuation peak is shifted to lower energies and the
height of the peak decreases. On further increasing J⊥ a new peak emerges at low energies.
This new peak slightly shifts to higher energies and grows with increasing J⊥. The physical
origin for these low-energy excitations is inter-plane spin excitations, and consequently the
new peak is of similar nature to a peak in the in-plane optical conductivity of the one-band t–J
model observed in the parameter regime J = 1.5–2.0 and scaling with J [35, 36].
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Figure 11. Optical c-axis conductivity for t⊥ = 0.2, δ = 0.05 and various J⊥.

The strong relationship of this peak with the many-body resonance in the spectral functions
can be seen by looking at σc(ω) for t⊥ = 0.2 and different values of the inverse temperature
β shown in figure 12. Here we also compare the cases J⊥ = 0.0 on the left-hand side and
J⊥ = 0.06 on the right-hand side as for the spectral functions in figure 6.
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ω
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 J⊥=0.0
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0.03
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ω

)

 J⊥=0.06

β=10.0
β=30.0 
β=50.0
β=100.0

Figure 12. Optical conductivity for t⊥ = 0.2, J⊥ = 0.06, δ = 0.05 and various β. As in figure 6,
on the left-hand side results for J⊥ = 0.0 are shown, while on the right-hand side we considered
J⊥ = 0.06.
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For J⊥ = 0.0 the optical conductivity just has a charge-fluctuation peak at around 2t⊥.
The height of this peak is reduced for decreasing temperature, but despite the emerging of the
Kondo-like peaks at the Fermi level, as seen on the left-hand side of figure 6, no pronounced
low-energy excitation in the optical conductivity can be seen. If we compare this to the case of
J⊥ = 0.06 on the right-hand side of figure 12, we again see a suppression of the height of the
peak atω ≈ 2t⊥ on lowering the temperature. But as with increasing β the quasi-particle peaks
in the spectrum start to grow and move apart (see figure 6, right-hand side), the spectral weight
in the optical conductivity is shifted to lower energies and a new peak emerges at ω ≈ 2J⊥.
Let us stress again that the decisive difference compared to the case of J⊥ = 0.0 is the splitting
of the Kondo-like peaks at the Fermi level, which scales with J⊥ rather than t⊥. Because of
the temperature dependence and the intimate connection with J⊥, it can be concluded that
this excitation in the optical conductivity must be attributed to low-energy excitation with a
J⊥-dependent energy scale.

5. Summary and conclusions

In this work we investigated a bilayer model with strong electronic correlations and presented
results for the one-particle properties and the optical conductivity perpendicular to the planes
connected with charge fluctuations between the layers. The model was solved within the
dynamical mean-field theory with special emphasis on the coupling between the planes,
particularly the antiferromagnetic coupling J⊥. For J⊥ = 0.0 we found an enhancement
of the one-particle hopping between the planes, which may be attributed to ferromagnetic
correlations, whereas for J⊥ > 0 a strong suppression can be found, up to a complete blocking
of the inter-planar charge dynamics for intermediate values of J⊥. Corresponding effects could
also be found in the analysis of the optical conductivity in the c-direction, where a suppression
of the charge dynamics by strong correlations is found. For moderate values of t⊥ we observed
a rather featureless optical conductivity in the c-direction, which is in qualitative accordance
with experiments for the cuprates. The influence of J⊥ was found to further lower the strength
and to shift the response to lower energies. For larger values of J⊥ a peak appears which
scales with J⊥ and increases with decreasing temperature. This peak can be attributed to spin
fluctuations and is expected to be found also in the inter-plane magnetic susceptibility. In
summary it can be said that for finite but not too high values of J⊥ the coherent one-particle
hopping between the planes of the two layers is suppressed as can be seen in the splitting of
the symmetric and antisymmetric bands and in the optical conductivity.
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Appendix A. The double-impurity Anderson model

In this paper we applied the DMFT to a double-layer system, choosing as local unit a two-site
molecule coupled to two effective media of conduction electrons on the two layers. The local
problem was solved using a perturbation theory in the hybridization interaction within the so-
called non-crossing approximation (NCA). In this appendix we want to discuss the accuracy
of this approximation by comparing results for a double-impurity Anderson model (DIAM)
with a single-impurity Anderson model (SIAM) in a special limit.
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For the double-impurity system coupled to two bands of conduction electrons we use the
following Hamiltonian:

H =
∑
α,k,σ

εα,kc
†
α,k,σ cα,k,σ +

∑
α,σ

εαf
†
α,σ fα,σ + V

∑
k,α,σ

(f †
α,σ cα,k,σ + h.c.)

− t⊥
∑
σ

(f
†
1,σ f2,σ + f †

2,σ f1,σ )− J⊥S
f

1 · S
f

2 . (A.1)

For the density of states of the conduction electrons we use ρα(ω) = ρ02(D − |ω|) and
measure all energies in units of the Anderson width  = πρ0V

2.
The model (A.1) has the property that in the limit t⊥ → 0 and accordingly J⊥ → 0 it

describes two identical single impurities coupled to separate conduction bands. The result for
the partition function should therefore factorize into the product of two partition functions for
single impurities in this limit, and the single-particle Green’s function should be identical for
the DIAM and the SIAM. This is not the case, if we treat the double-impurity model in the
NCA. Before we discuss the reason for this discrepancy in detail, let us look at some numerical
results for the local Green’s function.

In figure A1 we show results for the spectral function calculated for the DIAM and the
SIAM within the NCA for t⊥ = 0, J⊥ = 0 and model parameters εf = −3, β = 100.
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0.2

0.3
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)

SIAM within the NCA
DIAM within the NCA
DIAM with vertexcorrections

−0.4 −0.2 0.0 0.2 0.4
ω
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ρ f(ω
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Figure A1. Comparison of the resolvent techniques for the SIAM and the DIAM. The solid line
shows the spectral function for the SIAM calculated with the NCA. The dotted line shows the
spectral function for the DIAM calculated within the NCA, and the dashed line shows the result for
the DIAM achieved by including vertex corrections. The inset shows the details around the Fermi
level.

Although the qualitative features are similar, the two results do not agree completely: in
the DIAM the charge-fluctuation peak is slightly broader, but, more important, the Kondo
peak is lower. The difference is due to the NCA used. In fact, the discrepancy can be reduced,
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if vertex corrections beyond the NCA are included for the DIAM, as becomes evident from
figure A1.

The reason why the NCA works differently for two decoupled impurities and for a double-
impurity model with t⊥ = 0 can be understood best with the help of the diagrams for the
partition function. Since the inclusion of the two-particle interaction into the unperturbed part
of the Hamiltonian forbids the use of Wick’s theorem, the resolvent technique works with
time-ordered Green’s functions. In the case of two single impurities we have separate time
integrations for each impurity. A second-order correction for the first impurity due to the
hybridization with τ2 > τ1 is given by the diagram shown in figure A2(a) and a fourth-order
diagram for the second impurity with τ6 > τ5 > τ4 > τ3 is shown in figure A2(b).

Figure A2. Diagrams for the decoupled impurities.

Within a resolvent perturbation theory for the DIAM the individual contributions in
figure A2 will lead to several possible diagrams shown in figure A3. In the case of τ1 > τ6

we obtain the diagram in figure A3(a), whereas for τ6 > τ2 > τ5 > τ4 > τ1 > τ3 the
diagram is like that in figure A3(b). These two diagrams have in common that they are
included in the standard NCA for the DIAM. But other possible time orderings are given by
τ2 > τ6 > τ1 > τ5 > τ4 > τ3 where the resulting diagram is shown in figure A3(c), and
τ2 > τ6 > τ5 > τ1 > τ4 > τ3 as shown in figure A3(d). Diagrams of the type figure A3(c) are
included in the treatment of the DIAM with vertex corrections, leading to the improvement
visible in figure A1. Diagrams like the one in figure A3(d) are responsible for the remaining
differences. Including these types of diagram, and even higher-order vertex corrections, would
impose numerical complications that are beyond all technical possibilities.

This example already shows that in order to obtain the same level of accuracy in the DIAM

Figure A3. Diagrams for the DIAM which result of the combination of the diagrams for the single
impurities in figure A2.
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in comparison with the SIAM, vertex corrections up to infinite order have to be included in
principle. As, however, the main features of the spectral function are already well described
by the NCA for the DIAM, we neglect the numerical cumbersome and time-consuming vertex
corrections in our calculations. Besides this, it can be expected that the vertex corrections
become much less important in the lattice problem as the coupling of the impurity to the
conduction bands of the order of t/t⊥ becomes smaller with increasing t⊥.
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[9] Liu R, Veal B W, Paulikas A P, Downey J W, Kostić P J, Fleshler S, Welp U, Olson C G, Wu X, Arko A J and

Joyce J J 1992 Phys. Rev. B 46 11 056
[10] Ding H, Bellman A F, Campuzano J C, Randeria M, Norman M R, Yokoya T, Takahashi T, Katayama-Yoshida H,

Mochiku T, Kadowaki K, Jennings G and Brivio G P 1996 Phys. Rev. Lett. 76 1533
[11] Shen Z X and Dessau D S 1995 Phys. Rep. 253 1
[12] Holmes C C, Timusk T, Liang R, Bonn D A and Hardy W N 1993 Phys. Rev. Lett. 71 1645
[13] Dahm T, Manske D and Tewordt L 1996 Phys. Rev. B 54 6640
[14] Liechtenstein A I, Gunnarson O, Andersen O K and Martin R M 1996 Phys. Rev. B 54 12 505
[15] Grabowski S, Schmalian J, Langer M and Bennemann K H 1997 Phys. Rev. B 55 2784
[16] Tranquada J M 1992 Phys. Rev. B 46 5561
[17] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[18] Müller-Hartmann E 1989 Z. Phys. B 74 507
[19] Pruschke Th, Obermeier Th, Keller J and Jarrell M 1996 Physica B 223+224 611
[20] For a review, see Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[21] Kim C-J, Kuramoto Y and Kasuya T 1987 Solid State Commun. 62 627
[22] Keiter H and Kimball J C 1971 Int. J. Magn. 1 233
[23] Keiter H and Morandi G 1984 Phys. Rep. 109 227
[24] Bickers N E, Cox D L and Wilkins J W 1987 Phys. Rev. B 36 2036
[25] Obermeier Th, Pruschke Th and Keller J 1996 Ann. Phys., Lpz. 5 137
[26] Pruschke Th, Jarrell M and Freericks J K 1995 Adv. Phys. 44 187
[27] Pruschke Th, Cox D L and Jarrell M 1993 Phys. Rev. B 47 3553
[28] Schmalian J, Lombardo P, Avignon M and Bennemann K H 1996 Physica B 223+224 602

Lombardo P, Avignon M, Schmalian J and Bennemann K H 1996 Phys. Rev. B 54 5317
[29] Schork T and Blawid S 1997 Phys. Rev. B 56 6559
[30] Maier Th, Zölfl M B, Pruschke Th and Keller J 1999 Eur. Phys. J. B 7 377
[31] Brandt U and Mielsch C 1998 Z. Phys. B 75 365
[32] Pruschke Th, Qin Q, Obermeier Th and Keller J 1996 J. Phys.: Condens. Matter 8 3161
[33] Pruschke Th, Obermeier Th and Keller J 1996 Physica B 230–232 895
[34] Vidberg H J and Serene J W 1977 J. Low Temp. Phys. 29 179
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